Mostrando entradas con la etiqueta Inducción. Mostrar todas las entradas
Mostrando entradas con la etiqueta Inducción. Mostrar todas las entradas

INDUCCIÓN: 🔎

(I) un argumento es inductivo en sentido fuerte si la verdad de sus premisas hace probable la verdad de su conclusión.
(II) Inducción matemática: una forma de argumento (deductivamente válido) usado en matemáticas, para mostrar que todos los números tienen una propiedad mostrando que 0 tiene esa propiedad, y que si un numero tiene esa propiedad su sucesor también la tiene.
(Haack, 1978).

El propósito del razonamiento inductivo o lógica inductiva es el estudio de las pruebas que permiten medir la probabilidad de los argumentos, así como de las reglas para construir argumentos inductivos fuertes. A diferencia del razonamiento deductivo, en el razonamiento inductivo no existe acuerdo sobre cuándo considerar un argumento como válido. De este modo, se hace uso de la noción de "fuerza inductiva", que hace referencia al grado de probabilidad de que una conclusión sea verdadera cuando sus premisas son verdaderas. Así, un argumento inductivo es fuerte cuando es altamente improbable que su conclusión sea falsa si las premisas son verdaderas.

Tradicionalmente se consideraba (y en muchos casos todavía se considera) que el razonamiento inductivo es una modalidad del razonamiento que consiste en obtener conclusiones generales a partir de premisas que contienen datos particulares o individuales. Por ejemplo, a partir de la observación repetida de objetos o eventos de la misma índole se establece una conclusión general para todos los objetos o eventos de dicha naturaleza.
(Wikipedia).

VÁLIDO, VALIDEZ LÓGICA: 🔎

un argumento formal es,
sintácticamente válido en L, syss su conclusión se sigue de sus premisas y de los axiomas de L, si los hay, mediante las reglas de inferencia de L;
semánticamente válido en L, syss su conclusión es verdadera en todas las interpretaciones de L en las que todas sus premisas son verdaderas.
Un argumento informal es válido syss sus premisas no pueden ser verdaderas y su conclusion falsa.  (Haack, 1978).
Es una propiedad que tienen los argumentos cuando las premisas implican la conclusión. Si la conclusión es una consecuencia lógica de las premisas, se dice que el argumento es deductivamente válido. De las inducciones a veces se dice que son buenas o malas, en vez de válidas o inválidas. (Wikipedia).
Un argumento es válido syss el conjunto de proposiciones compuesto por sus premisas y la contradictoria de su conclusión es inconsistente.